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Although deep learning models have shown promising results in solving problems related to image
recognition or natural language processing, they do not match how the biological brain works. Some of
the differences include the amount of energy consumed, the way neurons communicate, or the way they
learn. To close the gap between artificial neural networks and biological ones, researchers proposed the
spiking neural network. Layered Spiking Neural P systems (LSN P systems) are networks of spiking
neurons used to solve various classification problems. In this paper, we study the LSN P systems in the
context of a federated learning client-server architecture over horizontally partitioned data. We analyze
the privacy implications of pre-trained LSN P systems through membership inference attacks. We also
perform experiments to assess the performance of an LSN P system trained in the federated learning
setup. Our findings suggest that LSN P systems demonstrate higher accuracy and faster convergence
compared to federated algorithms based on either perceptron or spiking neural networks.
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1. Introduction

Classical deep learning algorithms have proven to be
effective for various use-cases 303 34 29 28; 273 22; 14,
However, they do not mimic the way the biological
brain works, which leads to high energy consump-

tion. This led to the design of spiking neural net-

*Corresponding author

works (SNNs for short) that are much closer to bi-
ological foundations . One difference between the
two types is energy consumption. The human brain
consumes about 20W compared to an ordinary com-
puter, which consumes about 175W 43, Another dif-
ference is how artificial neural networks learn (ANN).
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The standard way for training an ANN is using the
backpropagation algorithm 2°. This algorithm in-
volves updating the weights of an ANN-based on an
error signal computed from a loss function. The ob-
jective is to discover the set of weights that results in
the lowest loss. While such error signals are messages
on 32 or 64 bits in an ANN, the biological neurons
communicate using spikes, i.e., 1 bit of information,
and they seem to learn using a rather unsupervised
strategy °. Also, the neurons from an ANN are mod-
eled by nonlinear functions such as ReLU, sigmoid,
or tanh 2°. This is very unlikely to happen in biolog-
ical neurons 3.

When implemented on conventional hardware,
SNNs do not bring an improvement in terms of the
amount of energy consumed. Still, on a special type
of hardware, called neuromorphic hardware, their en-
ergy consumption improves considerably 4% 19 49,
In this work, we address a special type of SNN
called Layered Spiking Neural P systems (LSN P
systems for short) 8. LSN P systems are a sub-class
of membrane computing that investigates computa-
tional models inspired by the living cell structure and
behavior 3. SN P systems and SNNs were used to
provide solutions to many machine-learning-related
problems, e.g., classification, image segmentation, or
image classification 8 7 40; 39 11; 415 35; 48; 21

This paper proposes a federated learning proto-
col for LSN P systems over horizontally partitioned
data. Our contribution includes a privacy analysis
and experimental results showing that our method
outperforms the current state-of-the-art federated
learning for both perceptron and spiking neural net-
works. The purpose of the protocol is to enable a cen-
tral party to train an LSN P system on multiple lo-
cal datasets while preserving their privacy. Since our
approach is based on the idea of sharing the weights
of a locally trained LSN P model to the server, it
becomes vulnerable to membership inference attacks
26, To this end, we experimentally assess the success
of such an attack on a pre-trained LSN P system
and suggest one mitigation strategy based on addi-
tive homomorphic encryption. We compare the per-
formances of our protocol with other federated learn-
ing approaches for both spiking and artificial neural
networks.

The rest of the paper is organized as follows: Sec-
tion 2 presents related work and LSN P systems; The
membership inference attack on pre-trained LSN P

systems is given in Section 3; Section 4 introduces the
federated learning protocol; Section 5 discusses the
experiments and comparison with other approaches
while Section 6 is left for conclusions.

2. Background

Significant research has been conducted on private
federated learning. A privacy-preserving training al-
gorithm allowing multiple parties to train a deep
learning model using gradient descent is proposed
in Ref. . Each client updates the gradient on lo-
cal data and then sends the encrypted gradient up-
date to a remote server. The server computes over
encrypted data another model, which is equivalent
to one trained over all local data. The protocol is
based on encryption schemes homomorphic with re-
spect to addition. In Ref. 10, the authors proposed
a protocol based on homomorphic encryption that
assumes that a remote server already has a trained
deep-learning model. The goal of the protocol is to al-
low clients to use the model without revealing private
data. In Ref. '2, the authors used somewhat homo-
morphic encryption to enable private training and in-
ference for a deep learning model. Secure multi-party
computation was used in Ref. 22 to construct a scal-
able system for privacy-preserving machine learning.
Differential privacy represents another technology
that can be used to build privacy-preserving machine
learning algorithms 6. Various protocols for privacy-
preserving SNNs were also proposed. In Ref. ¥, the
authors showed how to transform a trained ANN into
an SNN without revealing the weights of the origi-
nal model. Another approach to construct an SNN
that recognizes traffic signs based on private feder-
ated learning was presented in Ref. 7. A privacy-
preserving algorithm to train an SNN for time series
forecasting on health data was proposed in Ref. 24.
The federated learning protocol described in In Ref.
44 i based on gradients aggregation. To ensure ro-
bustness, at each round of the training process, a sub-
set of participants is randomly chosen to update the
master model. A federated learning system for neu-
romorphic hardware is proposed in Ref. 3%. Ref. 13
proposes another approach to federated learning for
SNNs. Their idea is to add noise to the local model
before sharing it, an approach based on differential
privacy. Regarding privacy aspects in SN P systems,
in Ref. 32, the authors proposed a privacy-preserving
protocol for evaluating linear SN P systems.
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Layered Spiking Neural P systems (LSN P sys-
tems), introduced in Ref. 48
SN P system aiming to solve classification problems.
In the original paper, the authors showed through ex-
tensive experiments that the system can provide ef-
ficient solutions to classification problems using real-
world datasets, e.g., MNIST dataset 3. The LSN P
system has three layers: the input layer, the hidden
layer, and the output layer. The system input is en-
coded as a nonlinear mixture of variables approxi-
mated by a Taylor polynomial *®. Each neuron of the
LSN P system has associated a fuzzy truth value, a
real number in [0,1]. All operations performed over
the fuzzy truth value of a neuron are implemented
by fuzzy operators described in Ref. 5. Two types
of neurons are in an LSN P system:

, represent a new type of

(1) The proposition neurons are denoted by Ugw
where h is the layer and 7 is the index of the
neuron in that layer. When a proposition neuron
receives multiple spikes, a boolean OR operator
is applied to its inputs.

(2) The rule neurons are denoted by a,}}j, where h is
the layer and j is the index of the neuron in that
layer. When multiple spikes enter a rule neuron,
the addition operator is applied.

The weights of the synapses linking the input and
the hidden layer are real numbers from [0, 1] and are
initialized randomly. The weights adjust the poten-
tial sent by a firing neuron by applying the multipli-
cation operator between the original potential and
the weight. During the training process, the weights
are updated by the supervised Widrow-Hoff learning
law 46, The LSN P system structure is described in
Figure 1.

3. Membership inference attack on
LSN P systems

The goal of a membership inference attack is to
determine, given a pre-trained model, i.e., a target
model, whether a particular sample was part of the
training dataset. The fact that the attacker can de-
termine whether certain data were used in a study
causes damage to the holder of that data 36 25, For
example, identifying a person in a medical dataset
reveals information about their health condition. We
experimentally prove that pre-trained LSN P sys-
tems are vulnerable to membership attacks by show-
ing that the model is more confident in predictions

made on the training set than in those made over
the test set. This type of attack is possible due to
the fact that most models behave differently on the
training data than on the test data. In this section,
we describe a membership inference attack on pre-
trained LSN P systems based on the framework in-
troduced in Ref. 37. Unlike the original approach,
which is based on a black-box model, in our feder-
ated learning protocol, the server has access to the
entire set of weights, so the model is easier to attack.
In the security model, we consider the server to be
a third-party honest-but-curious, i.e., it follows the
protocol but tries to find information about the un-
derlying data.

Following the scenario described in Ref. 37,

we
suppose that the attacker has access to the data
distribution on which the model was trained. Such
statistics can be gained by exploiting the differ-
ence between the confidence obtained on the training
dataset and the one on the test dataset 37. We denote
this distribution by D. Since the attacker knows D,
it can employ this to train multiple LSN P systems
using data akin to the training data of the target
model.

We define two quantities related to the confi-
dence of a pre-trained LSN P system: confidence val-
ues and model confidence. The confidence values of
an LSN P system are the potential values of the neu-
rons from the hidden layer. Let af be a vector of
these values. It is reasonable to assume that the at-
tacker has access to these values since it has access
to the entire set of weights. The model confidence on
a single sample is as the softmax function over af.
Each neuron on the hidden layer is assigned to a par-
ticular class; thus, by applying the softmax function,
we gain the probability of each class. The model con-
fidence over a dataset X is computed as the average
of the model confidence values of each sample.

The main idea of the attack is to construct a
dataset composed of confidence values and labels
that indicate whether the confidence values were ob-
tained from a sample belonging to the training or
testing dataset. The attacker takes the steps below.
An overview of the attack is depicted in Figure 2.

(1) Initialize a number S of LSN P systems called
shadow models.

(2) Initialize an empty dataset Dgirack-

(3) For each shadow LSN P system execute:
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(a) Given D, generate a training dataset Dipqin
and a testing dataset Dyegs such that Dyygin N
Diesi = 0. Each dataset contains the same
number of samples.

(b) Train the LSN P system over Dypqin.

(¢) For each sample of Dyyqin, compute the con-
fidence values, a2. Store the sample (a2,1)
in the Dattack~

(d) Proceed similarly with Dy, but assign the

label 0 to each vector of confidence values.

Split the dataset Dgecr, into C  partitions:
Dattack,, 0 < y < C where C represents the
number of possible outputs of the classification
algorithm. Each partition Dggtack, represents a
subset of Dgpqcr for which all samples were clas-
sified as y by the pre-trained model.

Trains a binary classifier for each partition
Dattacky of Dattack-

LSN P system

(6) Given an unknown sample x, the attacker first

4.

determines its class and a? using the pre-trained
LSN P system. To decide whether the sample
was part of the original training dataset of the
target LSN P system, the attacker classifies the
vector of potential values using the binary clas-
sifier for that specific class. The attack accuracy
for each class is defined as the accuracy of the
binary classifier for that particular class.

Federated learning protocol

In the federated learning protocol, a central party
called the server trains an LSN P system over mul-
tiple local datasets owned by the clients. The goal is
to train the central model without compromising the
privacy of the local datasets. Our protocol is derived
from FedMA, an algorithm based on weight averag-
ing instead of gradient averaging '°. In the case of
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Fig. 2. An overview of the attack strategy

LSN P systems, the weights are between each pair of
neurons o, and crfj with1<i<kand1l<j<m.
We make the following notations:

(1) Dy,Ds,...,Dy are the local training datasets.
|D.| represents the number of samples from the
local dataset, 1 < ¢ < N, where N is the number
of clients.

(2) R is the number of rounds of the federated learn-
ing protocol.

(3) E - the number of local epochs

(4) Wy, Wa,..., Wy - the weights of the local LSN
P systems.

(5) Ws - the weights of the central LSN P system.

At each round of the federated learning proto-

col, the server sends to each client the weights of the
central LSN P system. Each client trains an LSN P
system initialized with the weights received from the
server. After training, the clients share the weights
of their local LSN P systems with the server to be
aggregated according to Eq. (1). A complete descrip-
tion is given in Algorithm 1.

N

W= |IDil/ > ID;l | Wi (1)
=

i=1

Before encoding the input sample x into poten-
tial values of the input neurons, its values are scaled
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in [0,1]:

X ¢ — min 2)

Xmax — Xmin
The weights of an LSN P system are updated
during training according to the Hebbian learning

rule:

We e We+n(y—y)x (3)

where 7 is the learning rate, y and y represent the
output of the system, respectively the real label cor-
responding to the input sample x.

Algorithm 1 Federated learning
Require: Dy,D>,...,Dny , R, F
Ensure: Wy

1: Randomly initialize Wy
2: for round < 1 to R do
3: for c+ 1to N do
4: W, + TRAINCLIENTLSNP(D., Wy, E)
5: W, + |D716\ X We
6: end for

N

> We
7 Wy +— C;l

5 10
8: end for

9: return Wy,

Algorithm 2 Train LSN P system
Require: D., W,, E
Ensure: W,
1: function TRAINCLIENTLSNP(D,., W,, E)
2: Initialize the LSN P system with the weights
We

3: for x, y in D, do

4: Encode x using Eq. (2)

5: Add noise to x

6: Initialize the potential values of the input
neurons ozzln» with the encoded values.

T for epoch < 1 to E do

8: Compute y, the result of the classifi-
cation as the spiking time of neuron 021.

9: Update W, using Eq. (3)

10: end for

11: end for
12: end function

Our experiments show that a pre-trained LSN
P system is vulnerable to membership inference at-
tacks; thus, sending the pre-trained models to the
server to be aggregated can reveal information about
the datasets of the participants. A solution to this
problem is based on additive homomorphic encryp-
tion (AHE for short) '. An AHE scheme allows one
party to compute the ciphertext corresponding to the
sum of the plaintexts using only the associated ci-
phertexts:

Enc(my) ® Enc(ms) = Enc(my +mg)  (4)

The clients choose an AHE scheme and gener-
ate the secret key together with the corresponding
public key over a secure channel. They encrypt the
weights of the locally trained model with the pub-
lic key and send the ciphertext to the server. Us-
ing the homomorphic property described in Eq. (4),
the server computes the encryption of the central
model weights and sends the result to the clients.
The clients decrypt the ciphertext from the server
and retrieve the weights of the central model that
will be used in the next round of the federated learn-
ing protocol. After the last round, the clients will
share the model with the server. An overview of the
system is depicted in Figure 3.

e 6 o
e M s

Enc(Wy) Enc(Ws) Enc(W,)

N
’

Enc(Ws)

Fig. 3.  An overview of the system

5. Experiments

The first set of experiments shows that an LSN P sys-
tem is prone to membership inference attacks, prov-
ing the need to encrypt each model before sending it
to the server. The second set of experiments studies
various performance matrices of the LSN P system
in the federated setup.

The following datasets are used:
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(1) Iris plant dataset: this dataset is composed of
150 samples. Each sample contains 4 numeric at-
tributes about plants: the sepal length, the sepal
width, the petal length, and the petal width. It
is aimed to classify each sample in one of the
following classes: iris-setosa, iris-versicolour, and
iris-virginica ©.

(2) The handwritten digits dataset: this dataset is
composed of 5620 samples. Each sample repre-
sents a 8 x 8 grayscale image of a handwritten
digit. The goal is to associate each image digit
to the corresponding digit, one of 0 to 9 3.

(3) Wine recognition dataset: this dataset is com-
posed of 178 samples. Each sample contains 13
numerical attributes that characterize different
types of wine, e.g., alcohol, ash, magnesium, fla-
vanoids etc. The goal is to classify each sample
into one of the three types of wine encoded as 0,
1, and 2 2.

(4) The breast cancer dataset: this dataset is com-
posed of 569 samples. Each sample contains 30
numerical attributes related to breast tumors,
e.g., radius, texture, perimeter, symmetry, etc.
The goal is to classify each sample into benign
or malignant 47.

5.1. Membership inference attacks

In the first experiment, we show that a pre-trained
LSN P system is prone to membership inference at-
tacks. For each dataset, we first train an LSN P sys-
tem, and then we compute the model confidence over
the training dataset and the testing dataset. Each
trial of the experiment involves the following steps:

(1) For a dataset D, chose uniformly at random 50%
of the samples into the training dataset Dyyqin.
The testing dataset is Diest = D\ Dirain.

(2) Train an LSN P system over the set Diy.qin-

(3) Output the confidence of the model over the
Dtrain and Dtest-

We run the experiment for 100 trials and av-
erage the results. The outcomes are shown in Ta-
ble 1. For all datasets, the confidence of the model
over the training dataset is higher than that over the
test dataset. This shows that a pre-trained LSN P
system is prone to membership attacks since an at-
tacker can use the mean confidence to determine if a
sample is part of the training dataset. We denote by
CTr, CTs, and D the confidence over the training
dataset, the confidence over the testing dataset, and

the difference between the two.

Table 1. The confidence of the pre—

trained model
ID CTr CTs D
Iris 0.74 0.70 0.04
Wine 0.72 0.69 0.03
Breast Cancer 0.88 0.84 0.04
Digits 099 0.96 0.03

The difference between the training confidence and
the test confidence enables the attacker to gain in-
formation about the training data distribution.

The second experiment shows how the accuracy
of the attack, defined as the accuracy of the binary
classifier, varies with respect to the class. We followed
the steps of the attack described in Section 3 on the
handwritten digits dataset with 50 shadow LSN P
systems. The results are presented in Figure 4. This
shows that the distribution of the model’s outputs is
different depending on the true class of the sample.
Note the accuracy of the attack on LSN P systems is
higher than that on ANN, which is 0.51 on the same
dataset 37.

Attack accuracy for each class

Fig. 4. Attack accuracy with respect to the class

Figure 5 shows how the attack accuracy varies
in terms of the number of shadow LSN P systems
for each class. It is noted that there is no connection
between the number of shadow systems and the ac-
curacy of the attack. The results are similar to the
ones presented in Ref. 37,

5.2. Comparison with other approaches

For each dataset, 20% of it was kept to evaluate the
accuracy of the LSN P model resulting from the fed-
erated training protocol. The rest of 80% was split
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Class 0 Class 1

Class 2 Class 3 Class 4

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

Class 5 Class 6

2 6 10 14 18 22 26 30

Class 7 Class 8 Class 9

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

0.80 1 0.825 1 0.825 1

0.800 0.800 1
0.775 07754
0704 0.750 4 0.750 4

0.651 0.725 7 07231

0.700 4 0.700 4

0.675 4

0.675 1

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

2 6 10 14 18 22 26 30

2 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30

Fig. 5. Attack accuracy depending on the number of shadow models

equally and randomly between each participant. We
compare our approach with federated spiking neural
networks described in Ref. *4 and with federated arti-
ficial neural networks described in Ref. . The ANNs
and SNNs used for comparison have the same con-
figuration as LSN P systems, i.e., one hidden layer
followed by an output layer.

Figure 6 shows the accuracy of the test data de-
pending on the number of rounds in the federated
learning protocol. Although the curve is not smooth,
increasing the number of rounds leads to an increase
in accuracy. A similar effect is also present in Ref.
44 The experiment was performed with 5 partici-
pants. Figure 7 presents the accuracy with respect
to the number of rounds over the handwritten dig-
its dataset for federated LSN P systems, federated
SNNs, and federated ANNs. Our protocol archives
the best accuracy on every round. The system based
on LSN P systems converges more quickly than the
one based on ANNs, and both converge faster than
the system based on SNNs.

Table 2 presents the accuracy of the protocol on
each benchmark dataset using various values of the
number of clients. Increasing the number of clients
causes a slight decrease in accuracy. However, it re-
mains close to the value obtained by the original LSN
P system. Table 3 presents the impact of the num-
ber of clients on the accuracy of the central model
for the three compared models. The experiment was
performed over the handwritten digits dataset. Our
protocol obtains the best accuracies for each number
of clients. In terms of robustness, the loss in accuracy

from one client to 8 clients is, in our case, 0.01. In
the case of SNNs, the loss is 0.28, while for ANNs is
0.03.

Table 2. Accuracy comparison on multiple

datasets

ID 1 2 5 8
Iris 098 0.96 0.96 0.93
Wine 099 0.98 097 0.97
Breast Cancer 0.97 0.95 0.95 0.94
Digits 097 0.96 0.96 0.96

Table 3. Accuracy comparison with other approaches

1 2 5 8

Federated LSN P systems 097 0.96 0.96 0.96
Federated SNNs 44 0.93 0.89 0.80 0.65
Federated ANNs '° 0.97 0.95 0.95 0.94

We perform experiments with a large number
of participants using the handwritten digits dataset.
The accuracy of the compared protocols is depicted
in Figure 8. Increasing the number of participants
decreases the accuracy for all three models, although
the most impacted is the one based on SNNs. This
effect is also present in Ref. **. The reason for this
is that, during the experiments, the length of the
dataset that is shared between the participants re-
mains constant, which implies that each of them re-
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digits breast

Fig. 6. number of rounds and accuracy - a comparison over multiple datasets
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Fig. 7. number of rounds and accuracy - a comparison over multiple datasets
ceives less data as their number increases. The ex- protocol based on LSN P systems exceeds the other
periment focused on situations where there is a large two. This indicates that the system is scalable.
number of clients who do not have local datasets with All the experiments performed so far had the

a large number of samples. The federated learning training data randomly and equally divided among
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Fig. 8. The effect of the number of participants on accuracy

the participants. In this final experiment, we study
the accuracy of our protocol when the training data
is partitioned among the participants with respect to
the labels. Suppose that we want to solve a classifica-
tion problem for which we have n training samples.
Each sample is assigned one of the ¢ labels from the
set {y1,92,...,Yc}. Let D be the set of proper divi-
sors of ¢. We perform the following experiment:

(1) For each value d € D we initialize the protocol
with d participants.

(2) The i*" participant will receive all training exam-
ples that have labels between (i%dl)'c and %C -1
thus all training examples with a certain label
will be assigned to only one participant.

(3) Run the distributed training protocol and com-

pute the accuracy over the test dataset.

The results are given in Table 4.

Table 4. Accuracy of the trained LSN P model

with data partitioned with respect to labels

ID Num participants Acc
Iris 3 0.28
Wine 3 0.27
Breast Cancer 2 0.55
Digits 2 0.86
Digits 5 0.40
Digits 10 0.03

For this experiment, we conclude that to train
the LSN P model distributed with similar accuracy
to centralized training, each participant must train
his local LSN P model with data as diverse as pos-
sible regarding the labels. From Table 4, we see that
when each participant receives a single type of data,
i.e., data with a single label (e.g., the first participant
received only images with the digit 0, the second par-
ticipant received only images with the digit 1, etc.),
the accuracy is similar to random guessing. This last
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experiment studied the sensitivity of the LSN P sys-
tems in a federated learning setup.

All  experiments were performed on an
HP EliteBook 650 with 32GB of RAM.
The code for the experiments is available at
https://github.com/miiip /Federated-LSNP.

6. Conclusions and further
developments

In this paper, we proposed a federated learning pro-
tocol for LSN P systems. Our approach involves shar-
ing the weights of the locally trained models with the
server. We also assessed the impact of a member-
ship inference attack on pre-trained LSN P systems
and suggested a solution based on additive homo-
morphic encryption. We compared our protocol with
other federated learning approaches for spiking and
artificial neural networks. We proved experimentally
that our approach yields better accuracies, converges
faster during training, and is more robust for small
local datasets.

The first direction for future research is to con-
struct a protocol that obtains usable accuracy even
if the data is not randomly and equally distributed.
The paper shows that accuracy drops when each par-
ticipant has data of only one type (one label).

The second direction of research is to investi-
gate the behavior of LSN P systems in a federated
learning setup over large datasets.

A third research direction of interest is to in-
vestigate other types of architectures for federated
learning of LSN P systems. There are cases in which
the data is not horizontally partitioned and when
clients must manage the updating of local models
themselves without a server to direct the process.
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